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1 Probability

Probability is the mathematical tool used to quantify the uncertainty in statistical inference. One must have

a strong base in probability to start doing statistics.

Def : Sample Space is the collection of all possible outcomes of an experiment or process, denoted Ω

Def : An Event is a collection of outcomes in Ω, a subset of Ω, denoted A,B, etc.

Example: Tossing two coins: Ω = {(H,H), (H,T ), (T,H), (T, T )}. Event A could be the event of one

or more that one head occurring. A = (H,H), (H,T ), (T,H). Event B could be event of two tails occurring.

B = (T, T )

1.1 Axioms of Probability

1. P (Ω) = 1

2. P (A) ≥ for any event A

3. If the set of events A are mutually exclusive to each other then P (A1 ∪A2 ∪ · · · ∪An) =
∑n
k=1 P (Ak)

1.2 Properties of Probability

1. P (Ac) = 1− P (A)

2. P (∅) = 0

3. If A ⊂ B, then P (A) ≤ P (B)

4. P (A ∪B) = P (A) + P (B)− P (A ∩B)

1.3 Conditional Probability

Def : The probability of an event A given another event B.

• P (A|B) =
P (A ∩B)

P (B)

• P (A ∩B) = P (A|B) · P (B)

• P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|BC)P (BC)

1.4 Independence

Def : The events A and B are independent iff the occurrence of one has nothing to do with the occurrence

of the other.

• P (A|B) = P (A) and P (B|A) = P (B)

• If A,B are independent, then P (A ∩B) = P (A) · P (B)
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2 Counting, Permutation & Combination

2.1 Counting

The number of ways to count collections of items depends on if we are removing items permanently or

removing them, then putting them back in the lot of items.

Imagine we have n items, and we want to select k of them. If we make a selection, then place the se-

lected item back in the group of items, the number of possible choices is given by

n ∗ n ∗ n ∗ · · · ∗ n = nk

Now if we make the choices, but then leave the choices out of the group, the number of possible ways to

make r selections is given by

Pk,n = n ∗ (n− 1) ∗ (n− 2) ∗ · · · ∗ (n− k − 1) =
n!

(n− k)!

Now let’s do this again, assuming that the order of selection does not matter (we are still not replacing the

items after they are selected). We must divide by k! because there are that many possible orderings of the

k items drawn. (
n

k

)
=

n!

k!(n− k)!

2.2 Permutation and Combination

Def : A permutation is an ordered arrangement of a set of objects. If we have n elements, and want to select

k from them, then the permutation is given by Pk,n

Def : A combination is an unordered set of objects. If we have n elements, and want to select k from

them, then the permutation is given by n choose k =
(
n
k

)
Recall: (x+ y) =

n∑
k=0

(
n

k

)
ak · bn−k
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3 Discrete Distributions

3.1 Random Variables

Def : A random variable is a numerical valued function of a sample space Ω. These can be discrete or

continuous depending on the sample space. We are mapping outcomes to numbers

• Let X be a random variable

• The event of X = x stands for {ω ∈ Ω : W (ω) = x}

• The event of a ≤ X ≤ b stands for {ω ∈ Ω : a ≤ X(ω) ≤ b}

• The event of X ≥ b stands for {ω ∈ Ω : X(ω) ≥ b}

3.2 Discrete Random Variables

Def : A discrete random variable is a random variable in a sample space with discrete and enumerable

outcomes.

Def : A probability distribution of a discrete r.v. is a list of the distinct values x of the r.v. X, together

with the associated probability. This is also called the probability mass function or pmf, and is given by the

function

p(X) = P (X = x)

.

Def : A cumulative distribution function or cdf of a discrete r.v. is given by the function

F (x) = P (X ≤ x) =
∑
i:xi≤x

p(xi)

3.3 Bernoulli Distribution

Def : A Bernoulli random variable is a discrete r.v. whose only possible values are 0 and 1. Denoted

X ∼ Ber(p) where p is the probability of a success. Properties:

• P (X = 1) = p and P (X = 0) = 1− p

• E[X] = p

• Var(X) = np

• M(t) = (1− p) + pe(t)

• M (n)(t) = pe(t)

Bernoulli random variables can be used as indicator functions. That is, for the event A, let 1A denote an

indicator function s.t. 1A(ω) = 1 when w ∈ A and 0 otherwise. Then p = P (A).

3.4 Binomial Distribution

Def : A Binomial distribution is created by letting an r.v. X be equal to the number of successes in n

Bernoulli trials where each trail has probability of success p. More formally, let Z1, Z2, · · · , Zn be a series of

independent and identically distributed (i.i.d) Bernoulli trials. Then X =
∑n
i=0 Zi. Denoted X ∼ Bin(n, p).

Properties:
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• P (X = k) =

(
n

k

)
pk(1− p)n−k

• E[X] = n · E [Zi] = np

• Var(X) = np(1− p)

• M(t) =
[
pet + (1− p)

]n
• M ′(t) = n

[
pet + (1− p)

]n−1 · (pet)
3.5 Geometric Distribution

Def : A Geometric distribution is created by letting an r.v. X be equal to the number of Bernoulli trials

until the first success where each trail has probability of success p. Denoted X ∼ Geom(p). Properties:

• P (X = k) = p(1− p)k−1

• E[X] =
1

p

• Var(X) =
1− p
p2

• F (X) = 1− (1− p)k

• M(t) =
pet

1− (1− p)et

Note: The geometric distribution fulfills the memoryless property. Let X ∼ Geom(p), and let x, x0 > 0.

Then the memoryless property is given by:

P (X ≥ x+ x0|X ≥ x0) = P (X ≥ x)

This is clearly explained by coin flips. If you have flipped a coin five times and gotten heads each time, what

is the probability that you get heads on the next flip? Still .5

3.6 Negative Binomial Distribution

Def : A negative binomial distribution is created by a series of i.i.d. Bernoulli trials Zi ∼ Ber(p). X is

defined as the number of trials before r successes. The number r must be fixed. Properties:

• P (X = k) =

(
(k − 1)

(r − 1)

)
pr(1− p)k−r

• E(X) = pr
1−p

• Var(X) = pr
(1−p)2

• M(t) =
(

1−p
1−pet

)
Note: A geometric distribution is a special case of the negative binomial distribution where r = 1
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3.7 Poisson

Def : A Poisson distribution can be used to approximate a binomial distribution when n is very large and p

is very small, thus np is very normal sized. Recall that np is the expected value for a binomial distribution.

We let λ = np and create an r.v. X ∼ Pois(λ). Properties:

• P (X = k) =
e−λλk

k!

• E[X] = λ

• Var(X) = λ

• M(t) = eλ(e
t−1)

Example: Show that the pmf of a Poisson r.v is a valid pmf

∞∑
k=0

e−λλk

k!
(pull out constants)

e−λ·
∞∑
x=0

λk

k!
(note the similarity to the Taylor expansion)

e−λeλ

1
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4 Continuous Distributions

4.1 Continuous Random Variables

Def : A continuous random variable is a random variable in a sample space in which all numbers in a certain

continuous interval are possible.

Def : A probability distribution of a continuous r.v. is a function that maps an outcome to its respec-

tive probability. This is also called the probability density function, or pdf, and is given by the functions f(x)

where:

P (a < X < b) =

∫ b

a

f(x)dx

Properties of f(x):

• f(x) ≥ 0 for all x

• f(x) is piece wise continuous

•
∫∞
−∞ f(x)dx = 1

Def : The cumulative distribution of a continuous random variable is given by:

F (x) = P (X ≤ x) =

∫ x

−∞
f(u)du

Properties of continuous random variables:

• P (X = c) = 0

• P (a < X < b) = F (b)− F (a)

• P (a < X < b) = P (a ≤ X ≤ b)

• For all x where F ′(x) exists, F ′(x) = f(x)

Def : Let F be a strictly increasing cdf. Let p ∈ (0, 1). Then F−1(p) is called the p-th quantile. This is

essentially finding the x such that F (x) = p. In other words, given a probability p, find me the x such that

the probability of a continuous r.v. being less than x is exactly p.

• the .5 quantile is the median of F

• the .25 quantile is the lower quartile of F

• the .75 quantile is the upper quartile of F
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4.2 Exponential Distribution

Def : A continuous r.v. X follows an exponential distribution with parameter λ if:

f(x, λ) =

{
λe−λx when x ≥ 0

0 otherwise

F (x, λ) =

{
0 when x < 0

1− e−λx when x ≥ 0

Note: The exponential distribution fulfills the memoryless property. Let X ∼ Exp(λ), and let x, x0 > 0.

Then the memoryless property is given by:

P (X ≥ x+ x0|X ≥ x0) = P (X ≥ x)

Proof of the memoryless property:

P (X ≥ x+ x0|X ≥ x0) =
P (X ≥ x+ x0 ∩X ≥ x0)

P (X ≥ x0)

=
P (X ≥ x+ x0)

P (X ≥ x0)

=
1− F (x+ x0)

1− F (x0)

=
e−λ(x+x0)

e−λx0

=
e−λx · e−λx0

e−λx0

= e−λx

= 1− F (x)

= P (X ≥ x)

Properties of exponential random variable:

• E[X] =
1

λ

• Var(X) =
1

λ2

• M(t) = λ
λ−t
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4.3 Gamma Distribution

Def : A continuous r.v. X follows a gamma distribution (X ∼ Γ(λ, α)) with shape parameter α and scale

parameter λ if:

f(x, α, λ) =


λα

Γ(α)
xa−1e−λx

0 otherwise

The Gamma function is defined as:

Γ(α) =

∫ ∞
0

xa−1e−xdx

Properties of the Gamma function:

• for any α > 0, Γ(α) = (α− 1)Γ(α− 1)

• Γ(n) = (n− 1)! for any n ∈ N

• Γ
(
1
2

)
=
√
π

• M(t) =
(

λ
λ−t

)α
• M ′(0) = E(X) = α

λ

• Var(X) = α
λ2

Note: The exponential distribution is a special case of gamma distribution where α = 1.

4.4 Beta Distribution

Def : A continuous r.v. X follows a beta distribution (X ∼ Beta(a, b)) with parameters a, b if 0 < x < 1

and:

f(x) =
Γ(a+ b)

Γ(a) · Γ(b)
xa−1(1− x)b−1

Note: When a = b = 1, X ∼ Unif(0, 1) Properties of the beta distribution:

• E(X) = a
a+b

• Var(X) = ab
(a+b)2(a+b+1)

4.5 Uniform Distribution

Def : A continuous r.v. X follows a uniform distribution (X ∼ Unif(a, b)) if:

f(x) =


1

b− a
if a ≤ x ≤ b

0 otherwise

The cdf for a uniform distribution is given by:

f(x) =


x− a
b− a

if a ≤ x ≤ b

0 otherwise

Properties of the uniform distribution:
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• E(X) = 1
2 (a+ b)

• Var(X) = 1
12 (b− a)2

• M(t) = etb−eta
t(b−a) when t 6= 0. M(t) = 1 when t = 0.

Note: A particular use for uniform distributions involves this property: Let U ∼ [0, 1] and X = F−1(U),

then the cdf of X is F .

FX(x) = P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (X)

4.6 Normal Distribution

Def : A continuous r.v. X follows a normal distribution (X ∼ N(µ, σ2)) with mean of µ and std dev of σ2

and:

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2

P (X ≤ x) = Φ

(
X − µ
σ

)
Note: Let r.v. X ∼ N(0, 1). We call X the standard normal distribution, and it is often denoted Z. The

cdf of Z is given by:

f(z) = φ(z) =
1√
2π
e

1
2 z

2

Φ(z) = P (Z ≤ z)

Often times we will standardize a normal distribution to make it easier to understand. Let us say we have

X ∼ N(µ, σ2), we know that X−µ
σ ∼ N(0, 1) = Z.

Properties of the normal distribution:

• M(t) = eµte
σ2t2

2

4.7 Quantiles of Normal Distribution

Def : We call zα = 100(1− α) the (1− a) quantile, of the standard normal distribution. za is the value for

which the α-area lies to the right.

Let X ∼ N(µ, σ2) and let ηp be the p-quantile of X. Now we standardize:

p = P (X ≤ ηp) = Φ

(
ηp − µ
σ

)
Thus now we have:

ηp − µ
σ

= z1−p

Or, more usefully:

ηp = µ+ σz1−p
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4.8 Functions of Random Variables

What do we do when we want to construct new pdfs by applying functions to other pdfs?

Example: Let X ∼ N(0, 1) and Y = X2. Find pdf of Y .

First we construct FY (y).

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y)

= Φ(
√
y)− Φ(−√y)

Now we use F ′Y (y) = fY (y).

fY (y) = F ′Y (y)

=
1

2
φ(
√
y)y

−1
2 − −1

2
φ(−√y)y

−1
2 (note that φ(−√y) = φ(

√
y))

= y
−1
2 φ(
√
y) (only for y ≥ 0)

But there is another way to do this. Suppose we have r.v. X with pdf of fX and cdf of FX . Let Y = g(X).
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We want to find fY and FY . If g is a differentiable and strictly monotonic function on a certain interval,

and fX(x) = 0 outside of that interval, then:

fY (y) = fX(g−1(y))

∣∣∣∣ 1

g′(g−1(y))

∣∣∣∣
Assume we have some distribution X, and with that we have the fX and FX . Now we apply some function

g to X to yield a new distribution Y = g(X). We want to find fY . We begin by obtaining FY .

FY (y) = P (Y < y)

= P (g(X) < y)

= P (X < g−1(y))

= FX(g−1(y))

Now that we have found FY we must differentiate it to find fy.

fY (y) = F ′Y (y)

=
d

dx

[
FX(g−1(y))

]
= F ′X(g−1(y)) · d

dx

[
g−1(y)

]
= fX(g−1(y))

∣∣∣∣ 1

g′(g−1(y))

∣∣∣∣
4.9 Summing Distributions

Suppose that X and Y are two discrete r.v.s have in the joint pmf of p(x, y). Now we let the new r.v.

Z = X + Y . Note that Z = z exactly when X = x and Y = z − x. So in order to find pZ(z), we must sum

up all values:

pZ(z) =

∞∑
x=−∞

p(x, z − x)

And if X and Y are independent of each other, we have:

pZ(z) =
∑

pX(x) · pY (z − x)

This is called the convolution of PX and PY .

For the continuous case we a have similar formula:

fZ(z) =

∫ ∞
−∞

p(x, z − x)dx

Or if they are continuous then we have:

fZ(z) =

∫
pX(x) · pY (z − x)dx
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5 Joint Distributions

5.1 Discrete Random Variables

Def : The joint probability mass function, or pmf, or sometimes even pdf, for a pair of discrete r.v.s is given

by:

p(x, y) = P (X = x and Y = y)

Note: The joint pmf must satisfy:

• p(x, y) ≥ 0 for all (x, y)

•
∑
x

∑
y p(x, y) = 1

Def : The marginal pmf of X is pX(x) =
∑
y p(x, y). Similarly, the marginal pmf of Y is pY (y) =

∑
x p(x, y).

Def : Two r.v.s are independent, if and only if for every pair (x, y), we have p(x, y) = pX(x) · pY (y)

Def : The joint cumulative distribution function, or cdf, of two r.v.s is given by:

F (x, y) = P (X ≤ x and Y ≤ y) =
∑

xi≤x,yi≤y

p(x, y)

5.2 Categorical Distribution

Def : The categorical distribution is the generalized version of the Bernoulli distribution. Recall that a

Bernoulli distribution is a test that can either succeed or fail. a categorical distribution can be any number

of r outcomes, where each of the r outcomes occurs with a probability pr s.t.
∑
pr = 1.

5.3 Multinomial Distribution

Def : The multinomial distribution is the generalized version of the binomial distribution. It involves a series

of n categorical distributions where each categorical distribution has r possible outcomes. When
∑
ni 6= n

the probability is 0, because the number of outcomes that occur must sum to the number of trials. When∑
ni = n its pmf is given by:

p(n1, n2, . . . , nr) =

(
n

n1, n2, . . . , nr

)
pn1
1 pn2

2 · · · pnrr

Note that: (
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
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5.4 Continuous Random Variables

Def : If X and Y are two continuous r.v.s, then f(x, y) is the join probability density function, or pdf, of

(X,Y ) for any two dimensional set A:

P ((X,Y ) ∈ A) =

∫∫
A

f(x, y)dxdy

Note: The joint pdf must satisfy:

• f(x, y) ≥ 0 for all (x, y)

•
∫∞
−∞

∫∞
−∞ f(x, y) = 1

Def : The marginal pdf s of X and Y are given by:

fX(x) =

∫ ∞
∞

f(x, y)dy fY (y) =

∫ ∞
∞

f(x, y)dx

Def : Two continuous r.v.s are independent if for every pair (x, y) we have f(x, y) = fX(x) · fY (y)

Def : The joint cumulative distribution function, or cdf, of two r.v.s X and Y is given by:

F (x, y) = P (X < x and Y < y) =

∫ x

−∞

∫ y

∞
f(x, y)dydx

5.4.1 Joint Uniform Distribution

Def : This distribution occurs when the probability is evenly some area A. In this case f(x, y) = 1
A . This

must be the case so that integrating over the entire area equals one.

5.5 Transformations on Joint Distributions

Consider (Y1, Y2) = g(X1, X2) = (g1(X1, X2), g2(X1, X2)) where g is invertable and differentiatable. The

joint pdf of Y1 and Y2 is given by:

fY1,Y2
(y1, y2) = fX1,X2

(h1(y1, y2), h2(y1, y2))

∣∣∣∣ 1

J(h1(y1, y2), h2(y1, y2))

∣∣∣∣
Recall that:

J(x1, x2) = det

[
δg1
x1

δg1
x2

δg2
x1

δg2
x2

]
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6 Conditional Distributions

6.1 Discrete Random Variables

Def : For two discrete r.v.s X and Y , the conditional pmf of X given Y is:

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

Note: Rearranging the equation yields pX,Y (x, y) = PX|Y (x|y)PY (y), which brings us to an important

property that:

PX(x) =
∑
y

PX|Y (x|y)PY (y)

6.2 Continuous Random Variables

Def : For two continuous r.v.s X and Y , the conditional pdf of X given Y is:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

Note: Rearranging the equation yields fX,Y (x, y) = fX|Y (x|y)fY (y), which brings us to an important

property that:

fX(x) =

∫ ∞
−∞

fX|Y (x|y)fY (y)dy

7 Expectation

Def : For a discrete r.v. X, we define expectation to be

E(X) =
∑
x

xi · p(xi)

And then for a continuous r.v. we define it to be

E(X) =

∫ ∞
−∞

x · f(x) dx

This value is also known as the mean of a r.v. and may be denotes µ or µX . Note that if X and Y are

independent, then E(XY ) = E(X)E(Y ). Also we have that E(a+ bX) = b · E(X).

7.1 Expectation of Functions of r.v.s

Def : If we have a r.v. X and then another r.v. Y = g(X) then we have:

E(Y ) =
∑
x

g(xi)p(xi) or

∫
g(x)f(x) dx

7.2 Conditional Expectation

Def : The conditional expectation of Y given X = x is:

E(Y |X = x) =
∑
y

y · pY |X(y|x) or

∫
y · fY |X(y|x)
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7.3 Properties of Expectation

Note: An important property of expectation is that:

E(Y ) = E
[
E(Y |X)

]
This yields something called the law of total expectation which is given by:

E(Y ) =
∑
x

E(Y |X = x)pX(x) or

∫
E(Y |X = x)fX(x) dx

8 Variance

Def : The variance of a random variable X is given as:

Var(X) = E
{[
X − E(X)

]2}
= E(X2)−

[
E(X)

]2
Properties of variance:

• Var(a+ bX) = b2 ·Var(X)

• Var(Y ) = Var
[
E(Y |X)

]
+ E

[
Var(Y |X)

]
• Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

• Var
(∑

(Xi)
)

=
∑

Var(Xi) where Xi are independent

8.1 Covariance

Def : Covariance of two r.v.s is given by:

Cov(X,Y ) = E
[
(X − µX)(Y − µY )

]
Properties of covariance:

• Cov(aW + bX, cY + dZ) = acCov(W,Y ) + bcCov(X,Y ) + bdCov(X,Z) + adCov(W,Z)

• Cov(X,Y ) = E(XY )− E(X)E(Y )

• Cov(X,X) = Var(X)

• X,Y independent, then Cov(X,Y ) = 0

Def : Now we define the correlation coefficient to be:

ρ =
Cov(X,Y )√

Var(X)Var(Y )

8.2 Conditional Variance

Def : The conditional variance of Y given X = x is:

Var(Y |X = x) = E
[{
Y − E(Y |X = x)

}2∣∣∣X = x
]

= E(Y 2|X = x)− E(Y |X = x)2
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9 Moment Generating Function

Def : The moment generating function for an r.v. X is given as M(t) = E(etX) thus we have:

M(t) =
∑
x

etXp(x) =

∫
etXf(x) dx

Note: These are important because of the property that M (r)(0) = E(Xr)

Theorem: Another important property of the moment generating function is that if X has mgf of MX(t)

and Y = a+ bX then MY (t) = eatMX(bt).

Theorem: If X and Y are independent functions and Z = X + Y , then we have MZ(t) = MX(t)MY (t).

This is due to expectation for two independent r.v.s

10 Distributions Derived from Normal

10.1 Chi Squared Distribution

Def : The Chi Squared distribution with 1 degree of freedom is given by U , where U = Z2. Then the Chi

Squared distribution with n degrees of freedom is given by V = U1 +U2 + · · ·+Un and is denoted X2
n. Note

that V ∼ Gamma(n2 ,
1
2 ). The pdf is given:

f(v) =
1

2
n
2 Γ(n2 )

v
n
2−1e

−v
2

Properties of the Chi Squared:

• E(X) = n

• Var(X) = 2n

• M(t) = (1− 2t)
−n
2

11 Maximum Likelihood Estimator

Def : Suppose we have random variables X1, X2, ,̇Xn with a joint density of f(x1, x2, . . . , xn|θ). Given

observed values Xi = xi, then the likelihood of θ as a function of x1, x2, . . . , xn is defined as:

Lik(θ) = f(x1, x2, . . . , xn|θ)

The maximum likelihood estimate of θ is the value of θ that maximizes the likelihood of the observed data.

If the Xis are independent then we have:

Lik(θ) =

n∏
i=1

f(Xi|θ)

Usually we try to maximize the log of the likelihood so we have:

l(θ) =

n∑
i=1

log
[
f(Xi|θ)

]
Then we must find:

S(θ) =
δ

δθ
l(θ)

Then solve for θ̂ such that S(θ̂) = 0 and check that θ̂ maximizes l(θ). Then θ̂ is the MLE.
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